

A complete class notes
Of

Computer Architecture
(BEG474CO)

B.E
Electronics & communication

VII Semester

 Presented by:

 www.jayaram.com.np

Your easy access to complete study material…………………..

Downloaded from www.jayaram.com.np /1

Syllabus:

COMPUTER ARCHITECTURE BEG474CO
Year: IV Semester: I

Teaching Schedule
Hour/week

Examination Scheme

Theory Tutorial Practical Internal Assessment Final Total
Theory Practical* Theory** Practical 2 1 3/2
20 25 80 -

125

*Continuous
**Duration:3 hours
Course Objective: The course provides foundation knowledge of
Computer Architecture.
1. Introduction (4 hours)
 1.1 History of Computer.
 1.2 Organization and Architecture.
 1.3 Structure and Function.
 1.4. Pentium and Power PC Evolution.
2. Computer System. (6 hours)
 2.1 Computer Components.
 2.2 Computer Function.
 2.3 Interconnection Structures.
 2.4 Bus Interconnection.
 2.5 PCI
 2.6 Internal Memory.
 2.7 External Memory.
 2.8 Input/output System.
 2.9 Operating System Support.
3. The Central Processing Unit. (5 Hours)
 3.1 The architecture and Logic Unit.
 3.2 Integer Representation.
 3.3 Integer Arithmetic.
 3.4 Floating-Point Representation.
 3.5 Floating-Point Arithmetic.

4. Instruction Sets. (6 Hours)
 4.1 Machines Instruction Characteristics.
 4.2 Types of Operands.
 4.3 Types of Operations.
 4.4 Assembly Language.
 4.5 Addressing.
 4.6 Instruction Formats.
5. CPU Structure Function. (6 Hours)
 5.1 Processor Organization.
 5.2 Register Organization.
 5.3 The instruction Cycle.
 5.4 Instruction Pipelining.
 5.5 The Pentium Processor .
 5.6 The Power PC Processor.
6. Reduced Instruction Set Computers (RISC). (7 hours)
 6.1 Instruction Execution Characteristics.
 6.2 The use of Large Register File.
 6.3 Compiler-Based Register Optimization.
 6.4 Reduced Instruction Set Architecture.
 6.5 RISC Pipelining.
 6.6 The RISC versus CISC.
7. Control unit and Microprogrammed Control. (6 hours)
 7.1 Micro-Operations.
 7.2 Control of the CPU.
 7.3 Hardwired Implementation .
 7.4 Microinstruction Sequencing.
 7.5 Microinstruction Execution.
 7.6 Applications of Microprogramming.
8. Parallel Organization. (5 hours)
 8.1 Multiprocessing.
 8.2 Cache Coherence and MESI Protocol.
 8.3 Vector Computation.
 8.4 Parallel Processors.
Laboratory:

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /2

Student will be required to Design and Built a Project related to the
computer architecture.
References:

1. Mano, Pearson Education, “ Logic and Computer Design
Fundamentals”.

2. Sima, personal Education, “Advance Computer Architectures: A
Design Space Approach”.

3. Heuring Pearson Education, “Computer System Design
Architecture”.

4. M.Morris Mano, “Computer System Architecture”.
5. The Economics of Development and Planning by M.L.Jhingan.
6. Modern Economic Theory by K.K Dwett.

Downloaded from www.jayaram.com.np /3

History of computer:
1. First generation computer: (Vacuum tube):

- ENIAC (electronic Numerical integrator and computer)
designed by and constructed under the supervision of John
Mauchly and John prespereckrt at the university of
pennsyevenia was the world’s first general purpose
electronic digital computer.

The resulting machine was enormous weighting in 30 tones,
occupying 1500 sq feet floor space and containing more then
18000 vacuum tubes. When operating it consumes 140kw of
power. It was substantially faster then any electro-mechanical
computer being capable of 5000 addition per second.
 ENIAC was decimal machine i.e numbers were represented in
decimal form ring of 10 vacuum tubes represent each digit. At
any time only one vacuum tube was in ON state representing one
of 10 digits. The major drawback of ENIC was that it had to be
programmed manually by setting swithches and plugging and
unplugging cables.
In 1964, Von-Neumann and his colleagues begin the design of
new stored program computer referred to as IAS computer at the
Princeton institute for advance study. Figure shows the general
structure of IAS computer.

I/O
EquipmentMain memory

ALU

Program
Control
Unit

Fig. Structure of IAS computer.
It consist of following:

 Main memory: which store both data and instruction(program).
ALU:ALU capable of operating on binary data.
Control unit: Which interprets the instruction and memory and
causes them to be executed.
Input/ output unit: I/o equipment operated by control unit.

Second Generation:(Transistor): The first major change in
electronic computer came with the replacement of vacuum tube
by the transistor. The transistor is smaller cheaper and dissipates
less heat then a vacuum tube but can be used in same way as a
vacuum tube to construct computer. Unlike the vacuum tube
which requires the wire, metal plate, glass capsule and vacuum.
The transistor is sold state device made from silicon.
 The use of transistor define the second generation of
computer. The second generation saw the introduction of more
complex arithmetic and logic unit and control unit, use of high
level languages and provision of system software with the
computer.

Third generation: (integrated circuit):A single self contain
transistor is called discrete component. Through out the 1950’s
and early 1960’s electronic equipment was composed largely of
discrete components – transistor, capacitor, resistor and so on.
Discrete component will manufacture separately packed in their
own container and solder together on circuit board. Which were
then instilled in computer oscilloscope and other electronic
equipment. The entire manufacturing process from transistor to
circuit board was expensive and cumbersome.
 In 1958 came the achievement that revolutionized electronic
and started the era of micro electronics; the invention of
electronic circuit. It is the integrated circuit that defines third

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /4

generation of computer. The integrated circuit exploits the facts
that such component as transistor resistor and conductors can be
fabricated from semiconductor such as silicon. It is merely
extension of solid state art to fabricate entire circuit in tiny peace
of silicon rather then assemble discrete component made from
separate peace of silicon. Initially only a few gates could be
reliably manufacture and package together these early integrated
circuit are referred as Small scale integration. (SSI).
Later generation: Beyond the third generation there is less
general agreement of defining generation of computer. With the
introduction of large scale integration (LSI) more then one
thousand component can be placed on single integrated circuit
chip define 4th generation computer. Very large scale integration
VLSI achieve more then ten thousand component per chip and
current VLSI chip can contain more then one lakh components
per chip defines 5th generation of computer.

Date: 2065/11/8

Organization and architecture:
 Computer architecture refers to those attributes of a system
visible to a programmer or those attributes that help direct
impact on logical execution of program. Computer organization
refers to operational units and their inter connections that realize
the architectural specification. Example of architectural attributes
include instruction set, number of bits used to represent various
data type, i/o mechanism and technique of addressing memory.
Organization attributes include those hardware details
transferring to the programmer such as control signal, interfaces
between computer and peripheral and memory technology used.

Structure and function:
A computer is a complex system contains million of elementary
electronic component.
Structure: The way in which the component are interrelated.
Function: The operation of each individual component is a part
of structure.

Figure:

Data movement
 appratus

Control
mechanism

Data storage
Facility Data processing

Facility

Operating enviroment
(Source and destination of data)

Fig. depticts the basic functions that a computer can perform. In
general terms, there are only four:

- Data processing.
- Data storge.

Downloaded from www.jayaram.com.np /5

- Data movement
- Control

Structure:

Input/out Main memory

system
interconnection

central processing
unit

Computer

Computer

Fig: Computer: Top level structure.

There are four main structural components:

i) Central processing units: Controls the operation of
computer and performs its data processing function.

ii) Main memory: Stores data.
iii) I/O : moves data between the computer and its external

environment.
iv) System interconnection: Some mechanism that

provides for communication among CPU, main
memory and I/O.

Registor Arithmatic &
Logi unit

Internal CPU
interconnection

control unit

CPU

Fig: CPU

The major structural component of CPU are :
Control unit: Controls the operation of CPU
ALU: Performs the computer data processing function.
Register: provides storage internal to the CPU.
CPU interconnection: Some mechanism that provides the
communication among control unit , ALU and register.

Pentium & power PC evolution:
Pentium: Some of the highlight of evolution of Intel product line.

8080: Eight bit machine with eight bit data path to the memory.
8086: 16 bit machine with wider data path and larger register and
instruction queue that prefetch a few instructions before they are
executed.
80286: Extension of 8086 enabled addressing 16MB memory
instead of just 1 MB.
80386: 32 bit machine support multitasking meaning it could run
multiple programs at the same time.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /6

80486: Introduce the use of much more sophisticated and
powerful catch technology and sophisticated and instruction
pipelining.
Pentium: Pentium introduce super scalar technique which allow
multiple instruction to execute in parallel.
Pentium pro: Super scalar organization with aggressive use of
register renaming branch prediction.
Pentium 2: Design to process video , audio or graphics data
efficiently.
Pentium3: Support 3D graphics software.
Pentium 4: Includes enhancement of multimedia.
Itanium: Makes use 64bit organization.

Power PC: The following are the principle members of power
PC family.
601: 32 bit machine
603: Also 32 bit machine comparable in performance with 601.
But with lower cost more efficient implementation.
604: 32 bit machine uses much more advance super scalar design
technique to achieve greater performance.
620: 64 bit machine including 64 bit register and data path.
740/750: Also know as G3 processor integrates two levels of
cache in the main processor chip.
G4: Increases parallelism and internal speed of processor chip.

Date:2065/11/13

Chapter- 2
COMPUTER SYSTEM:
Computer components:

Figure:

PC

IR

Execution
 unit

MAR

MBR

I/O AR

I/O BR

Buffer

Insturction

Insturction

Insturction

0

1

2

Data

Data

System bus

 Fig:- Computer components.

 PC – program counter
 IR – Instruction register.
 MAR- memory address register.
 MBR- memory buffer register.
 I/O AR – input/output address register.
 I/O BR – Input/output buffer register.

 The central processing unit (CPU) exchanges data with memory
for this purpose it typically makes used of two internal (to the
cpu) register MAR which specify the address in memory for
next R/W and MBR which contents the data to be written into
the memory or received the data from the memory similarly I/O
AR specify the particular i/o device. I/O BR register is used for
exchange of data between I/O module and CPU.

Downloaded from www.jayaram.com.np /7

 A memory module consists of set of location defined by
sequential number address each location content a binary no that
can be interpreted as a instruction or data. I/O module transfer
the data form external device to CPU and memory vice-versa. It
contains internal buffer for temporarily holding these data until
they can be sent on.

Computer function: The basic function performed by a
computer is execution of program which consist of set of
instruction stored in memory. Instruction processing consists of
two steps:
 processor reds (fetches) instruction from memory one at a time
and executes each instruction.
 The processing requires for single instruction is called
instruction cycle.
Figure shows basic instruction cycle:

START Fetch Execute
instruction

HALT

Fetch
cycle

execute
cycle

At the beginning of each instruction cycle the processor fetches
the instruction from a memory. Program counter holds the
address to be fetched next. Unless told other wise the processor
always increment programmer counter after each instruction
phase so that it will fetch next instruction in sequence.
The fetched instruction is loaded into instruction register. The
instruction contains bits that specifies the action the processor is

to take. The processor interprets the instruction an performs the
required action. In general this actions fall into four category.
Processor memory: Data may be transferred from processor to
memory or memory to processor

.Processor I/O: Data may be transferred to or form peripheral
device by transferring between processor and I/O memory.

Data processing: The processor may perform some arithmetic
or logic operation on data.

Control: An instruction may specifies that the sequence of
execution be alter.

Date: 2065/11/14

Computer Function:
Step:1 (fetch cycle):

PC1 9 4 0

5 9 4 1

2 9 4 1

300

301

302

300

1 9 4 0

CPU Registor

0 0 0 3

0 0 0 2

940

941

AC

IR

Step:2

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /8

PC1 9 4 0

5 9 4 1

2 9 4 1

300

301

302

301

1 9 4 0

CPU Registor

0 0 0 3

0 0 0 2

940

941

AC

IR

0 0 0 3

Step: 3

PC1 9 4 0

5 9 4 1

2 9 4 1

300

301

302

301

5 9 4 1

CPU Registor

0 0 0 3

0 0 0 2

940

941

AC

IR

0 0 0 3

Step: 4

PC1 9 4 0

5 9 4 1

2 9 4 1

300

301

302

302

5 9 4 1

CPU Registor

0 0 0 3

0 0 0 2

940

941

AC

IR

0 0 0 5

Step:5

PC1 9 4 0

5 9 4 1

2 9 4 1

300

301

302

302

2 9 4 1

CPU Registor

0 0 0 3

0 0 0 2

940

941

AC

IR

0 0 0 5

Step: 6

PC1 9 4 0

5 9 4 1

2 9 4 1

300

301

302

303

2 9 4 1

CPU Registor

0 0 0 3

0 0 0 2

940

941

AC

IR

0 0 0 5

The program fragment shown adds the contents of memory
words at address 940 to the contents of memory word at address
940 and stores the result in latter location.
 Three instruction which can be describe as three fetch and
three execute cycles are require:

1. Pc contains 300, the address of 1st instruction. This
instruction is loaded into the IR and PC is incremented.

2. The first four bits in IR indicate that AC is to be loaded .
The remaining 12 bits specify the address (940) from
which data are to be stored.

3. The next instruction 5941 is fetch from the location 301
and PC is incremented.

Downloaded from www.jayaram.com.np /9

4. The old contents of AC , and contents of location 941 are
added and the result is stored in AC.

5. The next instruction 2941 is fetch from location 302 and
PC is incremented.

6. The contents of AC are stored in 941.

To accommodate interrupt, an interrupt cycle is added to the
instruction cycle as shown in fig.

Start

HALT

Fetch
next
instruction

Execute
instruction

Check for
 interrupt;
process interrupt

Interrupt
cycle

Interrupt
disable

Fetch cycle Execute cycle

Interrupt
enable

 Fig: Instruction cycle with interrupt.

In the interrupt cycle the processor checks to see if any interrupt
have occur , indicated by the presence of interrupt signal. If no
interrupt are pending , the processor proceeds to fetch cycle and
fetch the next instruction of current program of interrupt is
pending, the processor does the following:
1. It suspense the execution of current program being executed

and saves its content.
2. It sets the program counter to starting address of interrupt

and routine.

i+1

1

2

m

i

Interrupt occour
here.

User Program Interrupt handeler

Interconnection Structure:
 A computer consist of set of components or module of three
basic types, (processor , memory , I/O) that communicate with
each other. The collection of path connecting various module is
called interconnection structure. The design of this structure will
depend on exchanges that must be made.
Figure suggest the type of exchanges that must be needed by
indicating the major for of input and output for each module
type.

Read

Write

Address

Data

Data

Read

Write
Address

Internal Data

External Data

Internal Data

External Data

Interrupt
Signal

Memory
N word

o

N-1

I/O module
M port

Interrupt

Data

Interrupt
Signal

Address

Control signal

Data

CPU

Fig: Computer module

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /10

Date: 2065/11/15
The interconnection structure must support the following type of
transfer :

1. Memory to processor
2. Processor to memory
3. I/O to processor
4. Processor to I/O
5. I/O to or from memory.

Bus interconnection: A bus is communication path way
connecting two or more devices. A key characteristics of bus is
that it is a share transmission medium. Typically a bus consists
of multiple communication path ways or lines. Each line is
capable of transmitting signal representing binary 1 and binary 0.
Several line of bus can be used to transmit binary digit
simultaneously (in parallel). For example 8 bit unit of data can
be transmitted over 8 bus lines. Computer system contains a
number of different buses that provide path ways between
components at various level of computer system hierarchy. A
bus that connect major computer components (processor,
memory, I/O) is called system bus. The lines can be classified
into three functional groups data, address and control lines.

C PU mem ory m em ory I/O I/O. . . .

Figure: Bus interconnection Scheme.

Physically the system bus is actually a number of parallel
electrical conductors in the classic bus arrangement these
conductors are metal lines etched in board as shown in figure.

CPU

Memory

I/O

Fig: Typical physical realization of bus architecture.

If a great number of devices are connected to the bus
performance will suffer. In general the more devices attached to
the bus length and hence the greater propagation delay. Most
computer system used multiple buses. A typical traditional
structure is shown in figure.

Downloaded from www.jayaram.com.np /11

Processor Cache
Local bus

Local I/O
Controller

expansision bus

System bus

Network SCSI
expansion
bus
interface

Modem Serial

Main
Memory

SCSI= small computer system interface

Fig. Traditional bus architecture.

The use of cache structure insulates the processor from
requirement to access main memory frequently. I/O transfers to
and from main memory across the system bus do not interfere
with the processors activity. An expansion bus interface buffers
data transfer between the system bus and I/O controllers. These
tradition bus architecture is reasonably efficient but begins to
breakdown as higher and higher performance is seen in the I/O
devices. In response to these growing demands common
approach taken by industry is to built high speed bus that is
closely integrated with rest of the system requiring only bridge
between the processors bus and high speed bus.

High speed bus

Expansion bus

catch/bridge

main memory

processor

SCSI Firewire Graphic Video LAN

Expansion
 bus
interface

modem serialFax

System bus
local bus

Figure: High performance architecture (Mezzanine architecture)

Date:2065/11/19
PCI(Peripheral Component interconnection):
Peripheral component interconnect is a popular high bandwidth
processor independent bus that can function as peripheral bus
compared with other common bus specification. PCI delivers
better system performance for high speed I/O Sub system(
network interface controller). PCI is design to support a variety
of microprocessor base configuration including both single and
multiple processor system. Fig shows typical use of PCI in single
processor system.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /12

Processor

Bridge
Memory
/controller

Cache

DRAM Audio Motion
video

PCI BUS

LAN SCSI Expansion
bus
Bridge

Basic
I/O
device

Graphics

Expansion
bus interface

Fig: Typical desktop system.

A combine DRAM controller and bridge a PCI bus provides
tight coupling with the processor and ability to deliver data at
high speed. The bridge acts data buffer so that the speed of PCI
bus may differ from that of processor I/O capability.

System bus

Processor/
cache

Processor/
cache

Memroy
Controller DRAM

Host bridge
Host bridge

PCI BUS

Expansion
bus bridge

Expansion
bus bridge

PCI BUS

SCSI SCSI CAN CAN PCI to
PCI bridge

Fig: Typical server system.
In multiprocessor system one or more PCI configuration may be
connected by bridges to processor system bus. The system bus
supports only the processor/catch unit, main memory and PCI
bridge.

Internal memory:
RAM: One distinguishing characteristics of RAM is that it is
possible both to read data from the memory and write new data
into the memory easily and rapidly. Other distinguishing
characteristics of RAM is that it is volatile. Ram most be
provided with constant power supply. The two tradition form of
RAM used in computer are DRAM and SRAM.

DRAM: DRAM is made with a cells that stores data as charge
on capacitor. The presence or absence of charge on capacitor is
interpreted as binary 1 or 0. Because capacitor have a natural
tendency to discharge , DRAM requires periodic charge
refreshing to maintain data storage.

Downloaded from www.jayaram.com.np /13

Address line

bit line(B)

storage
capacitor

Fig: DRAM cell

The address lines is activated when the bit value from the cell is
to be read or written. The transistor acts as switch.
 For write operation voltage signal is applied to the bit line, a
high voltage represents 1 and low voltage represents 0. A signal
is then applied to the address line allowing charge to be
transferred to the capacitor. For read operation when address line
selected the transistor turn ON and charge stored on capacitor is
fed out on to bit line.

SRAM:

Address line

Bit line(B)

T5

T1 T2

T6

T4T3

C1

C2

DC voltage

Bit line(B)

Figure: SRAM line.

Four transistor T1, T2 , T3 , T4 are cross connected in arrangement
that produce a stable logical state. In logic state 1 pint c1 and
high and point c2 is low. In this state T1 and T4 are off and T3
and T2 and on. As in the DRAM the address line is used to open
or close a switch. The address lines control two transistor T5 and
T6. When a signal is applied to this line the two transistor are
switch on allowing read or write operation.

Date:2065/11/22

External memory (Auxiliary memory): To understand fully
the physical mechanism of external memory devices one must
have a knowledge of magnetic electronics and electromechanical
systems. Although the physical properties of there storage
devices can be quite complex. Their logical properties can be
characterized by few parameters. The important characteristics
of any devices are its access mode, access time, transfer rate
capacity and cost.

Magnetic disk:

Read/write
 head

track

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /14

A magnetic disk is a circular plate constructed with metal or
plastic coated with magnetic material often both side of disk are
used and several disk stacked on one spindle which Read/write
head available on each surface. All disk rotate together at high
speed. Bits are stored in magnetize surface in spots along
concentric circles called tracks. The tracks are commonly
divided into sections called sectors. After the read/write head are
positioned in specified track the system has to wait until the
rotating disk reaches the specified sector under read/write head.
Information transfer is very fast once the beginning of sector has
been reached.
 Disk that are permanently attached to the unit assembly and
can not be used by occasional user are called hard disk drive
with removal disk is called floppy disk.

RAID(Redundant Array Independent Disk):
 Disk storage designers recognize that if one component can only
be pushed so far addition gain in the performance are to be had
by using multiple parallel components in the case of disk storage
this leads to the development of arrays of disk that operate
independently and in parallel with multiple disk separate I/O
request can be handled in parallel as long as the data reside on
separate disk. Further single I/O request can be executed in
parallel if the block of data to be accessed is distributed across
multiple disk.
With the use of multiple disk there is wide variety of ways in
which data can be organized and in which redundancy can be
added to improve reliability. This could make it difficult to
develop data base scheme that are usable on number of plat form
and operating system. Fortunately industry has agreed on

standardized on scheme for multiple disk data base design know
as RAID.

Optical memory: The huge commercial success of CD enabled
the development of low cost optical disk storage technology that
has revolutionized computer data storage. The disk is form from
resin such as polycarbonate. Digitally recorded information is
imprinted as series of microscopic pits on the surface of poly
carbonate . This is done with the finely focused high intensity
leaser. The pited surface is then coated with reflecting surface
usually aluminum or gold. The shiny surface is protected against
dust and scratches by the top coat of acrylic.
 Information is retrieved from CD by low power laser. The
intensity of reflected light of laser changes as it encounter a pit.
Specifically if the laser beam falls on pit which has some what
rough surface the light scatters and low intensity is reflected
back to the surface. The areas between pits are called lands. A
land is a smooth surface which reflect back at higher intensity.
The change between pits and land is detected by photo sensor
and converted into digital signal. The sensor test the surface at
regular interval.

Magnetic tape: Tape system used the same reading and
recording technique as disk system. The medium is flexible
polyester tape coated with magnetizable material.
 Data on tapes are structured as number of parallel tracks running
length wise. Earlier tape system typically used nine tracks. This
made it possible to store data one byte at a time with additional
parity bit as 9th track. The recording of data in this form is
referred to as parallel recording.

Downloaded from www.jayaram.com.np /15

Date:2065/11/29

Input/output system:

System bus

I/O module

Address lines

Data lines

Control lines

Links to
peripheral

Figure: Model of I/O module

The computer systems I/O architecture is its interface to the
outside world. An external device attached to the computer by a
link to an I/O module. The link is used to exchange control,
status and data between the I/O port and external device. An
external device connected to I/O module is often referred to as
peripheral device or simply peripheral.
 We can broadly classify external device into 3 categories.
1) Human readable; suitable for communicating with computer

user.

2) Machine readable; Suitable for communicating with
equipment.

3) Communication: Suitable for communicating with remote
devices.

Examples of human readable devices are VDV and printers.
Examples of machine readable devices are magnetic discs and
tapes. Communication devices allow a computer to exchange
data with remote device. Which may be a human readable
device, a machine readable device or another computer.
 The most common means of computer/user interaction is
keyboard/monitor arrangement. The user provides input through
the keyboard. This input is then transmitted to the computer and
may also be displayed on monitor. In addition, the monitor
display the data provided by the computer.
 In very general terms, the nature of external devices is
indicated in fig below.

Control
logic

Buffer

Transducer

Control signal
form i/o module

Control signal
to i/o module Data bits to &

from i/o module

Data to & from
 environment

Fig: Block diagram of external device.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /16

Operating system Support:
Operating system is a program that controls the execution of
application program and acts as interface between the user of
computer and computer hardware. The os as a user computer
interface. The hardware and software used in providing
application to a user can be viewed in hierarchical fashion as
depicted in fig.

Appliction
program

Utilities

Operating Sytem

Computer Hardware

end user

Operating sytem
design

 Fig: layers and view of computer system

The end user use a computer system in terms of application that
application can be expressed in programming language and is
developed by application program. If one were to develop
application program as set of processor instruction that is
completely responsible for controlling computer hardware, one
would face with complex task. To each this task a set of system
program is provided. Some of these program are referred to as
utilities. These implement frequently used function that assist in
program creating, management of file and control of I/o devices.
The operating system acts mediator making it easier for
programmer to access and use those facilities and services.
 Briefly the operating typically provides services in the
following areas.:

1. Program creation: The operating system provides a variety of
facility and services such as editors and debuggers to assist
the programmers in creating program.

2. Program execution: A number of task need to be performed
to execute a program. Instruction and data must be loaded
into main memory, I/O devices and file must be initialized
and other resources must be prepared. The operating system
handles all o f this for the user.

3. Access to I/O devices: Each i/o devise requires its own
peculiar set of instruction or control signal for operation. The
operating system takes care of this details so that program can
think in terms of simple read and write.

4. Controlled access to file: In this case of system with multiple
simultaneous user, the operating system can provide
protection mechanism to control access to the file.

5. System access: The access function must provide protection
of resources and data from unauthorized users.

6. Errors detection & response: A variety of errors can occur
while compute system is running. These include internal and
external hardware errors. Such as memory errors, device
faller or various software errors such as arithmetic over flow.
In each case operating system must make the response that
clears the error condition.

7. Accounting: A good operating system will collect usages
statistics for various resources and monitor performance
parameter such as response time.

Downloaded from www.jayaram.com.np /17

The Operating system as Resource manger:

Memory
OS
software

Program
 &
data

I/O
controller

I/O
controller

I/O
controller

Processor Processor os
program

data

I/O
devices

storage

computer system

A computer is a set of resources for the movement storage and
processing of data for the control of these function. The
operation system is responsible for managing these resources.
Figure suggest the main resources that are managed by operating
system.
 A portion of operating system is in main memory. The reminder
of main memory contains other user programs and data. The
operating system decide when i/o device can be used by a
program in execution and controlled access to and use of files.
The processor is itself resources and the os must determine how
much processor time is to be devoted to the execution of
particular user program.

Date: 2065/12/4

Arithmetic and Logic Unit : ALU is the part of computer that
actually performs arithmetic and logical operations on data. All

of the other elements of computer system- control unit, registers,
memory, I/O are their mainly to bring data into the ALU for it to
process and then to take the result back out.
 An ALU & indeed all electronic components in computer are
based on the use of simple digital logic device that can store
binary digit and perform simple Boolean logic function. Figure
indicates in general in general term how ALU is interconnected
with rest of the processor.

Contorl unit

register register

flags
ALU

Data are presented to ALU in register and the result of operation
are stored in register. These registers are temporarily storage
location within the processor that are connected by signal path to
the ALU. The ALU may also set flags as the result of an
operation. The flags values are also stored in registers within the
processor. The control unit provide signals that control the
operation of ALU and the movement of data into an out of ALU.

Integer Representation: (Fixed-point representation):
An eight bit word can be represent the numbers form zero to 255
including
 00000000 = 0
 00000001 = 1

 11111111 = 255

In general if an n-bit sequence of binary digits an-1, an-2 …..a1, ao
 Is interpreted as unsigned integer A. It’s value is

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /18

 A = ∑n-1
i=0 2iai

Sign magnitude representation:
There are several alternative convention used to represent –ve as
well as +ve integers, all of which involves treating the most
significant (left most) bit in the word as sign bit. If the sign bit is
0 the number is +ve and if the sign bit is 1 the number is –Ve. In
n bit word the right most n-1 bits hold the magnitude of integer.
E g.
 +18 = 00010010
- 18 = 10010010 (sign magnitude)
The general case can be expressed as follows:
 A = ∑n-2

i=0 2iai if an-1 = 0 .
 = -∑ n-2

i=0 2iai if an-1 =1

There are several drawbacks to sign-magnitude representation.
One is that addition or subtraction require consideration of both
signs of number and their relative magnitude to carry out the
required operation. Another draw back is that there are two
representation of zero. Eg.
+010 = 00000000
-010 = 10000000 which is inconvenient.

Date:2065/12/5

Twos complement representation:
Like sign magnitude tows complement representation uses the
most significant bit as sign bit making it easy to test weather the
integer is negative or positive. Differs from the use of sing
magnitude representation in the way that other bits are

interpreted. For negation take the Boolean complement of each
bit of corresponding positive number, then add one to the
rustling bit pattern viewed as unsigned integer.
 Consider n bit integer A in twos complement representation. If
A is +ve then the sign bit an-1 is zero. The remaining bit
represent the magnitude of the number.
 A = ∑n-2

i=0 2iai for A ≥ 0
The number zero is identified as +ve and therefore has zero sign
bit and magnitude of all 0’s. We can see that the range of +ve
integer that may be represented is from 0 (all the magnitude bits
are zero) through 2n-1-1 (all of the magnitude bits are 1.)
 Now for –ve number integer A. The sign bit an-1 is 1. The
range of –ve integer that can be represented its from -1 to -2n-1
 Twos complement, A = -2n-1an-1+∑n-2

i=0 2iai
Defines the twos complement of representation of both positive
and negative number.
E.g
Decimal Sign magnitude Twos complement
 representation representation
 +7 0111 0111
 -7 1111 1001

-128 64 32 16 8 4 2 1

(a) Eight-position twos complement value box.

-128 64 32 16 8 4 2 1
1 0 0 0 0 0 1 1

-128 +2 +1 = -125
(b) Convert 10000011 to decimal

Downloaded from www.jayaram.com.np /19

-128 64 32 16 8 4 2 1
1 1

 -120 =-128 +8
(c) Convert decimal -120 to binary
Fig. use of value box for conversion between 2’s complement
binary and decimal.

Converting between different bit lengths:
It is some time desirable to take n bit integer and store it in m bit
where m greater then n. In sign magnitude notation this easily
accomplished: simply move the sign bit to the new left most
position and fill in with zero.
+18= 00010010 (sign magnitude , 8 bits)
+18= 0000000000010010(sign magnitude 16 bit)
-18= 10010010 (sign magnitude , 8 bit)
-18= 1000000000010010(sign magnitude , 16bit)

This procedure will not work for 2’s complement –ve integer.
-18= 11101110 (2’s complement, 8 bits)
 -32,658 = 1000000001101110 (2’s complement , 16 bits)
Instead the rules for 2’s complement integer is to move the sign
bit to the new left most position and fill in with copies of sign
bit. For +ve numbers fill in with zero and for –ve numbers fill in
with 1’s. This is called sign extension.

-18= 11101110 (2’s comlemetn , 8 bit)
-18= 111111111101110

To see why this rule work, let us again consider n bit sequence of
binary digits. an-1an-2……a1ao interpreted as twos complement
integer so that its value is A = -2n-1an-1+∑ n-2

i=0 2iai

If A is +ve number the rule clearly works , now if A is –ve we
want to construct m bit representation with n>m.
A = -2m-1am-1+∑m-2

i=0 2iai
The two values must be equal,
-2m-1am-1+∑m-2

i=0 2iai = -2n-1an-1+∑ n-2
i=0 2iai

-2m-1+∑m-2
i=0 2iai = -2n-1+∑ n-2

i=0 2iai
2n-1+∑m-2

i=n-1 2iai = 2m-1

1+ ∑n-2
i=0 2i +∑m-2

i=n-1 2iai =1+ ∑m-2
i=0 2i

∑m-2
i=n-1 2iai= ∑m-2

i=n-1 2i
 i.e
am-2 = …….=an-1 = 1

Date: 2065/12/6

Integer arithmetic:
Negation: N bit a sequence of binary digit an-1an-2….a1ao as twos
complement integer A. So that its value,
 A = -2n-1an-1+ ∑n-2

i=02iai
Now form the bit wise complement an-1(comp)an-

2(comp)….a1(comp)ao(comp) and treating this unsine integer and
add 1. Finally interpreter the result in n bit sequence of binary
digit as tows complement integer B. So that its value is
 B = -2n-1an-1(comp)+∑n-2

i=02iai(comp)
Now we want, A = -B which means A+B=0
A+B = -2n-1an-1+ ∑n-2

i=02iai-2n-1an-1(comp)+∑n-2
i=02iai(comp)+1

 = -2n-1(an-1+an-1(comp))+∑n-2
i=02i(ai+ai(comp))+1

 = -2n-1+∑n-2
i=02i = -2n-1+1+2n-1-1 = 0

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /20

Addition and Substraction:

The first four examples illustrate successful operation if the
result of the operation is +ve then we get +ve number in ordinary
binary notation. If the result of the operation is –ve we get
negative number in twos complement form. Note that in some
instants there is carry bit beyond the end of what which is ignore.
 On any addition the result may larger then can be held in word
size being use. This condition is called over flow. When
overflow occur ALU must signal this fact so that no attempt is
made to use the result. To detect overflow the following rule
observed. If two number are added, and they are both +ve or
both –ve. Then overflow occurs if and only if the result has the
opposite sign.
 The figure suggest the data path and hardware elements need ot
accomplish addition and subtraction.

B register A register

Complemental

S/W

OF Adder

Fig: Block diagram of hardware for subtraction and addition.

1011
1101
1011

0000
1011

1011
10001111

Multiplicand 11

Multiplier 13

partial product

product (143)
Fig. Multiplication of unsigned binary integers.

1. The multiplication involve the generation of partial product 1

for each digit in the multiplier. This partial products are then
sum to produce final product.

2. The partial product are easily define. when the multiplier bit
is zero the partial product is zero. When the multiplier is 1
the partial product is the multiplicand.

1100 = -4
0100 = +4
10000 = 0
(b) (-4)+(4)

1001 = -7
0101 = +5
1110 =-2
(a) (-7)+(+5)

1100 = -4
1111 = -1
11011 = -5
(d) (-4)+(-1)

1001 = -7
1010 = -6
10011 = overflow
(f) (-7)+(-6)

0011 = 3
0100= 4
0111= 7

(c) (+3)+(+4)

0101 =5
0100 =4

 1001=overflow
(e) (+5)+(+4)

Downloaded from www.jayaram.com.np /21

3. The total product is produce by summing the partial
products. For this operation each successive partial product is
shifted one position to the left relative the perceiving partial
product.

4. The multiplication of two n bit binary integer results in
product of upto 2n bits in length. Eg. 11 ×11= 1001

Mn-1 Mo.

An-1 Ao.

Qn-1 Qo

Shift and add
control logic

C

.

Multiplier

n bit adder

Multiplicand

Add

Shift

Fig: (a) block diagram.

C A Q M
0 0000 1101 1011 Initial values
0 1011 1101 1011 Add
0 0101 1110 1011 Shift
0 0010 1111 1011 shift
0 1101 1111 1011 add
0 0110 1111 1011 shift
1 0001 1111 1011 Add
0 1000 1111 1011 Shift
 (b) examples from fig (i) (product in A,Q)
Date: 2065/12/18

Control logic reads bits of multiplier one at a time. If Q0 is 1 the
multiplicand is added to A register and result is stored in A
register with C bit used for overflow then all of the bits of C , A
, and Q register are shifted to the right one bit so that C bit goes
into An-1, A0 goes into Qn-1 and Q0 is lost. If Q0 is zero and no
addition is perform , just the shift. This process is repeated for
each bit of the original multiplier. The resulting 2n bit product is
contain in A and Q register. A flow chart of the operation is
shown in fig.

start

C,A -- 0
M -- Multiplicant
Q -- Multiplier
count -- n

No

Shift right
C,A,Q
Count
 count-1

C,A A+M

is
Qo=1? Yes

is
count=o

 is
count=o
 ?

EndYesNo

2’s complement multiplication: If we multiply 11 (1011) by 13
(1101) we get 143 (10001111). If we interpret this as two’s

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /22

complement numbers we have, - 5 (1011) times -3 (1101) equals
-113(10001111).This example illustrate that straight forward
multiplication will not work if both the multiplicand and
multiplier are negative. In fact it will not work if either the
multiplicand or multiplier is negative. The problem is that each
contribution of negative multiplicand as a partial product must be
negative on 2n bit field. The sign bit of partial product must line
up.

 1001 (9)
 0011 (3)
00001001
00010010
00011011(27)

(a) unsigned integer.

 1001 (-7)
 0011 (3)
11111001
11110010
11101011 (-27)

(b) 2’s complement integer.

Fig: comparison of multiplication of unsigned and twos
complement integer.

Booth’s algorithm: It has the benefit of speeding of
multiplication process relative to more straight forward
approach. Both algorithm is depicted in figure.

A -- 0, Q-1--0
M -- Multiplicant
Q -- Multiplier
count -- n

End

Arithmatic
shift
Right: A,Q,Q-1
Count -- count-1

A= A-M
A= A+M

Q0,Q-1

count=0
 ?

No

=01

=10

=11
=00

start

Fig. Booth’s algorithm for 2’s complement multiplication.

Date: 2065/12/19

A Q Q-1 M
0000 0011 0 0111 Initial values.
1001 0011 0 0111 A←A-M
1100 1001 1 0111 Shift
1110 0100 1 0111 Shift
0101 0100 1 0111 A←A+M
0010 1010 0 0111 shift

Downloaded from www.jayaram.com.np /23

0001 0101 0 0111 Shift
 Fig. Examples of Booth’s algorithm (7 x 3)

Multiplier and multiplicand are placed in Q and M register
respectively. There is also one bit register placed logically to the
right of the least significant bit Qo of the Q register and
designated as Q-1. The result of multiplication will appear in A
and Q resister. A and Q-1 are initialized to zero if two bits (Qo
and Q-1) are the same (1 – 1 or 0 -0) then all the bits of A , Q
and Q-1 registers are shifted to the right 1 bit. If the two bits
differ then the multiplicant is added to or subtracted from the A
register depending on weather the two bits are 0-1 or 1-0 .
Following the addition or subtraction the right shift occurs.

Division:

1011) 10010011
1011

001110
1011

001111
1011

100 Remainder

 partial
Remainder

Diviser
Divident

00001101 Quotient

start

A -- 0
M-- Divider
Q -- Divident
count -- n

count count-1

Qo 0
C,A A+M

shift left
A,Q

C,A A-M

A<0

Q0 1

count=0
 ? End Quotient in Q

Remainder in A

No Yes

No
Yes

 Fig : Flow chart for unsigned binary division.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /24

A Q M = 0011
0000 0111 Initial value
0000 1110 Shift
1101 Subtractor
0000 1110 restore
0001 1100 shift
1110 subtractor
0001 1100 restore
0011 1000 shift
0000 subtractor
0000 1001 set Q0 =1
0001 1001 shift
1110 subtractor
0001 0010 restore
(remainder) (quotient)

(1) (2)
 Fig: 7/3

The devisor is placed in M register, the dividend in the Q register
at each step A and Q registers together are shifted to the left1 bit.
M is subtracted from A to determine weather A divides the
partial remainder. If it thus then Q0 get 1 bit otherwise Qo get 0
bit. And M must be added back to A to restore the previous
value. The count is decremented and the process continuous for n
steps. At the end the Quotient is in the Q register and remainder
in the A register.

 Date:2065/12/20

Floating point representation: The floating point
representation of the number has two parts. The first part
represents a signed fixed point numbers called mantissa. The

second part designates the position of the decimal (or binary)
point and is called exponent . For e.g the decimal no +6132.789
is represented in floating point with fraction and exponent as
follows.
 Fraction exponent.
+0.6132789 +04
This representation is equivalent to the scientific notation
+0.6132789×10+4
 The floating point is always interpreted to represent a number in
the following form m×re .
 Only the mantissa and the exponent e are physically
represented in the register (including their sign) .The radix r and
the radix point position of the mantissa are always assumed.
 A floating point binary no is represented in similar manner
except that it uses base 2 for the exponent.
 For example the binary no +1001.11 is represented with 8 bit
fraction and 0 bit exponent as follows.
 0.1001110 ×2100
Fraction Exponent
01001110 000100
 The fraction has zero in the leftmost position to denote positive.
The floating point number is equivalent to m ×2e =
+(0.1001110)2 × 2+4

Floating point arithmetic: The basic operation for floating
point arithmetic are
 Floating point number Arithmetic Operations.
 X = xs ×BxE x+Y = (xs × BXE-YE+Ys) ×BYE

 Y = Ys ×BYE X-Y = (xs × BXE-YE-Ys) ×BYE

 X*Y = (Xx× Ys) × BXE+YE

 X/Y = (Xs/Ys) × BXE-YE

Downloaded from www.jayaram.com.np /25

For addition and subtraction it is necessary to ensure that both
operands have same exponent value. This may require shifting
the radix point on one of the operands to achieve alignment.
Multiplication and division are more straight forward.
 The exponent may be represented in biased
exponent in this representation, the sign bit is remove from
being separate entity. The bias is a positive no i.e added to the
each exponent as floating point no is formed so that internally all
exponents are positive. Consider an exponent that ranges form -
50 to 49. It is represented in registers as positive nos. in the range
of 0 to 99.
 The register organization for floating point operation is shown
in fig below.:

Bs B b BR

parallel adder parallel adder
& comparator

As A a Ac

Qs Q q QR

E

Fig: Register for floating point arithmetic operation.

There are two registers BR, AC and BR each register is
subdivided into 2 parts . The mantissa has the uppercase letters
symbols and the exponent part uses corresponding lowercase
letters symbol.
 It is assumed that each floating no has mantissa in sign
magnitude representation and biased exponent. Note that the
symbol AC represents the entire register that is concatenation of
As A and a similarly register BR is subdivide into BS . B and b

and QR into Qs, Q and q . A parallel adder adds the 2 mantissa
and transfer the sum into A and carry into E, a separate parallel
adder is used for exponent.

Addition and Subtraction: During addition and subtraction
two floating point operands are in AC and BR. The sums or
difference is formed in the AC. The algorithm can be divide into
4 consecutive parts.
1. Check for zeroes.
2. Allign the mantissa.
3. Add or subtract the mantissa.
4. Normalize the result.

* Multiplication: The multiplication can be subdived into 4
parts .
1. Check for zeroes .
2. Add the exponents.
3. Multiply mantissa.
4. Normalize the product.

Division: The division algorithm can be subdivided into 5 parts

1. Check for zeroes.
2. Initial registers and evaluate the sign.
3. Allign the dividend.
4. Subtract the exponent.
5. Divide the mantissa.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /26

Date: 2065/12/25

Chapter: 4

Instruction set:

Machine instruction Characteristics:
The operation of the CPU is determine by the instruction it
executes referred to as machine instruction or computer
instruction. The collection of different instruction that the cpu
can execute is referred to as CPU’s instruction sets.
 Each instruction must contain the information required by the
CPU for execution. The elements of machine instruction are as
follows:
1. Operation code.

- Specifies the operation to be performed. (e.g ADD).
- Source operand reference: Operands that are inputs for the

operation.
- Result operand reference: Operation may produce result.
- Next instruction reference: This tells the CPU where to

face the next instruction after the execution of this
instruction is complete.

During instruction execution an instruction is read into the
instruction register in the CPU. The CPU must be able to extract
a data from various instruction field to perform the required
operation.
 It is difficult for both the programmer and the reader of text
book to deal with binary representation of machine instruction.
Thus it has become common practice to use symbolic
representation of machine instruction.

 Opcode are represented by abbreviations called mnemonics
that indicates the operation. Common example include
ADD add
SUB Subtraction
MPY multiply
DIV divide
Operands are also represented symbolically. For example ,
instruction ADD R,Y add the value contain in data location y to
the content of register R.
 We can categories instruction types as follows:

1. Data processing: Arithmetic and logic instruction.
2. Data storage: memory instruction
3. Data movement: I/O instruction.
4. Control: Test and branch instruction.

Types of operands:

1. Address.
2. Number
3. Character.
4. Logical data.

Machine instruction operate on data. The most general categories
of data are address, number, character and logical data.
 Addresses are in fact a form of data in many cases some
calculation must performed on the operand reference in a an
instruction to determine the main memory address.
 All machine languages include numeric data types. Three types
of numerical data are common in computers.

- Integer or fixed point.
- Floating point.
- Decimal

Downloaded from www.jayaram.com.np /27

Although all internal computer operation are binary in nature.
The human user of the system deal with decimal number. Thus
there is necessity to convert from decimal to binary on input and
from binary to decimal on output.
 A common form of data is text or character streams, a
number of codes have been devised by which characters are
represented by sequence of bits. The most commonly use
character code in international reference alphabets (IRA) referred
to in the Unites states as American standard code for information
interchange (ASCII). Each charter in this code is represented by
unique 7 bit patter. Thus 128 different character can be
represented. Another code used to encode character is extended
binary coded decimal interchange code (EBCDIC). It is 8 bit
code in the case of EBCDIC 11110000 -11111001. Represent the
digits zero through nine (0-9).
 Normally each word or other addressable unit is treated as
single unit of data it is sometimes useful, however to consider n
bit unit as consisting of n one bit item of data. Each item having
the value 0 and 1. when data are viewed this way they are
considered to be logical data.

Date: 2065/12/26

Types of operations:
The number of different opcodes varies widely form machine to
machine. However the same general types of operation are found
on all machine. A useful and typical categorization is the
following:

- Data transfer
- Arithmetic
- Logical

- Conversion
- I/O
- System control
- Transfer of control

Data transfer: The data transfer instruction must specify several
things. First the location of source and destination operands
must be specified. Each location could be memory register or the
top of the stack. Second the length of data to be transfer must be
indicated. Third as with all instruction with operands the mode of
addressing for each operand must be specify. For example;
Operation name Description
Move Transfer word from source to
 destination.
Store Transfer word from processor to
 memory.
Push Transfer word from source to top of
 stack.
Pop Transfer word form top of stack
 to destination

Arithmetic: Most machine provide the basic arithmetic
operations of add , subtract , multiply and divide. Other possible
operation include a variety of single operand instruction. For
example;
Increment – Add one to the operand
Decrement – Subtract one from the operand.

Logical: Most machine also provide a variety of operation for
manipulating individual bits of work. They are based upon
Boolean operation. The basic logical operations that can perform
on binary data are shown below:

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /28

P Q NOT P P AND Q P OR Q P XOR Q P=Q
0 0 1 0 0 0 1
0 1 1 0 1 1 0
1 0 0 0 1 1 0
1 1 0 1 1 0 1

Conversion: Conversion instruction are those that change format
of data. An example is converting from decimal to binary.
Operation Name Description
Convert Convert the contents of word
 from one form to another.

Input/output : Input (read instruction) transfer the data form
specified i/o port to the destination. O/P (write instruction)
transfer data form specified source to i/o port.

System control: These instructions are reserved for the use of
operating system. A system control instruction may read or
altered control register.

Transfer of control: For all of the operation types discussed so
far, the next instruction to be performed is the one that
immediately follows in memory the current instruction. How
ever a significant fraction instruction in any program have as
their function changing the sequence of instruction execution.

Assembly language: A CPU can understand and execute
machine instruction. Such instruction are simply binary numbers
stored in the computer. If a programmer wished to program
directly in machine language , then it would be necessary to inter
the program as binary data.

 Consider the statement N = I+J+K. Suppose we wished to
program this statement in machine language and to initialize the
I,j and k to 2,3 and 4 respectively. The program starts in location
101(hexadecimal). Memory is reserved for four variable starting
at location 201. The program consists of 4 instructions.

1. load the content of location 201 into the Ac.
2. At the content of location 202 to the Ac.
3. At the content of location 203 to the Ac.
4. Store the content of Ac in the location 204.

Address Contents:
101 0010 0010 0000 0001 (2201)
102 0001 0010 0000 0010 (1202)
103 0001 0010 0000 0011 (1203)
104 0011 0010 0000 0100 (3204)

201 0000 0000 0000 0010 (0002)
202 0000 0000 0000 0011 (0003)
203 0000 0000 0000 0100 (0004)
204 0000 0000 0000 0000 (0000)

Address Instructions

101 LDA 201
102 ADD 202
103 ADD 203
104 STA 204
201 DAT 2
202 DAT 3
203 DAT 4
204 DAT 0.
 (c) Symbolic program

Downloaded from www.jayaram.com.np /29

Label Operation Operand
FORMUL LDA I
 ADD J
 ADD K
 STA N
I DATA 2
J DATA 3
K DATA 4
N DATA 0
 (d) Assembly language.

A slight improvement is to write the program in hexadecimal
rather than binary notation. For improvement we can make use
of symbolic name or mnemonic of each instruction. With the last
refinement we have assembly language. Program written in
assembly language are translated into machine language by a
assembler. This program must not only do the symbolic
translation but also assign some form of memory address to
symbolic address.
Date: 2065/12/27

Addressing:

 The most common addressing techniques are:

- Immediate
- Direct
- Indirect
- Register
- Register indirect
- Displacement
- Stack

Immediate addressing: The simplest form of addressing is
immediate addressing in which the operand is actually preset in
the instruction.

Operand

Instruction

This mode can be used to define and use constant or set initial
value of the variable.

Direct addressing: A very simple form of addressing is direct
addressing in which the address filed contains the effective
address of the operand. EA = A
EA – Effective address of the location containing reference
operand.

A

Operand

Instruction

Memory

Indirect addressing: With the indirect addressing the length of
addressing field is less than the word length thus limiting the
address length. One solution is to have the address field referred
to address of a word in memory which in term contains full
length address of the operand. This is know as invalid
addressing.
EA = (A)← contains of A

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /30

A

Instruction

Memory

Operand

Register addressing: It is similar to direct addressing. The only
difference is that, the address field refers to register rather than
the main memory address.

R

Operand

Instruction

Register

Register indirect addressing: Register indirect addressing is
analogous to indirect addressing. EA = (R) contains of R.

R

Instruction

Displacement addressing: A very powerful mode of addressing
combines the capabilities of direct addressing and register
indirect addressing.
FA = A+(R)

R A
Memory

+

Instruction

Stack addressing: The stack is the linear array of locations. It is
some times referred to as push down list or last in First out
(LIFO) queue. The stack pointer is maintained in register.

Instruction

Top of stack pointer

Implexit

Instruction Format: An instruction format must include
opcode and implicitly or explicitly zero or more operands.
 The most basic design issue to be faced is the instruction
format length. This decision affects and is affected by memory
size, memory organization bus structure, CPU complexicity and
CU Speed. More opcodes and more operands makes like easier
for a programmar because shorter program can be written to

Downloaded from www.jayaram.com.np /31

accomplish a given task. All of these things (opcodes, operands,
address range) require bits and push in the direction of longer
instruction length. But longer instruction length may be wasteful
. A 64 bit instruction occupies twice the space of 32 bit
instruction. But is probably less than twice as useful.
 An equally difficult issue is how to allocate the bits in that
format. For a given instruction length there is clearly trade off no
of opcodes and the power of addressing capabilities. More
opcodes obviously mean more bits in the opcode field, for an
instruction format of given length. This reduces the no of fields
available for addressing. This is the interesting refinement to this
trade off and that is use of variable length opcodes.

Date:2066/1/3

5. CPU structure and Function:
Processor organization: To understand the organization of
CPU. Let us consider the requirements placed on the CPU. The
things that is must do :

- fetch instruction: CPU reads instruction form memery.
- Interpret: The instruction is decoded to determine what

action is required.
- Fetch data: The execution of an instruction may require

reading data form memory or I/O module.
- Process data: The execution of an instruction may require

performing some arithmetic or logical operation on data.
- Write Data: the result of an execution may require writing

data to the memory of I/O module.

System bus

Control
 unit

Register

ALU

Fig: CPU with system bus.

Fig shows simplified view of CPU indicating its connection to
the rest of the system via system bus. The major components of
CPU are ALU and control unit in addition the fig shows a
minimum internal memory consisting set of storage location
called register.

Internal
CPU
Bus

Registers

Control unit

Status flag

Shifter

Complementer

Arithmetic and
boolean logic

Fig: internal structure of CPU.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /32

Figure shows more detail view of CPU. The data transfer and
logic control path are indicated including internal CPU bus.

Register organization: Within the CPU there is the set of
registers that functions as level of memory above main memory
and cache in the hierarchy. The register and CPU perform two
rolls:

1. User visible register: These enables the machine or
assembly language programmer to minimize main
memory references by optimizing use of register.

2. Control and status register: These are use by the control
unit to control the operation of CPU.

Types of user visible register: A user visible register is one that
may be referenced by mean of machine language that the CPU
executes. We can characterized these in the following categories.

1. General purpose
2. Data register
3. Address register
4. condition code register.

General purpose register can be assigned to a variety of function
by the programmer. Some times they are use within the
instruction set is orthogonal to the operation i.e any general
purpose register can contain the operand for any opcode.
 Data register may be used only to hold data and can not be
employed in the calculation of operand address.
 Address register may themselves be some what general
purpose or they may be devoted to a particular addressing mode.
 A final categorize of register which at least partially visible to
the user holds condition code (flags). Condition codes are bits set
by the CPU as the result of operation . For example , arithmetic

operation may produce +ve , -Ve , zero or overflow result. In
addition to the result itself being stored in the register or memory
a condition code is also set. Condition code bit are collected into
one or more registers usually they form part of uncode register.

Control and status register: There are variety of CPU register
that are employed to control the operation of CPU. Four register
are essential to instruction execution:

- Program counter (PC)
- Instruction register (IR)
- Memory address register (MAR)
- Memory buffer register(MBR).

These four register are use for the movement of data between the
CPU and memory.
 All CPU designs include a register or set of register often
known as program status word(PSW). PSW typically contain
condition code pulse other status information. Common flags
includes the following:

1. Sign: Sing contain the sign bit of result of arithmetic
operation.

2. zero : Set when the result is zero.
3. Carrey: Set if operation resulted in Carrey into or borrow

out of the higher order bit.
4. Equal: Set if a logical compare result is equality.
5. Overflow: Used to indicate arithmetic overflow.
6. Interrupt enable disable : used to enabled or disable

interrupt.

Downloaded from www.jayaram.com.np /33

Instruction cycle:

Fetch

Interrupt Indirect

Execute

 Fig: Instruction cycle:

The execution of an instruction may involve one or more
operands in memory each of which requires a memory access.
Further it indirect addressing is used then additional memory
access are required.
 We can think of fetching of indirect address as one more
instruction subcycle. The main line of activity consists of
alternating instruction fetch and instruction execution activities.
After an instruction is fetched it is examine to determine if any
indirect addressing is involved. If so required operations are
fetched using indirect addressing. Following execution and
interrupt may be processed before the next instruction fetched.
 During fetch cycle an instruction is read form the memory.
Figure shows flow of data during this cycle.

Address
 bus

 Data
 bus

 Control
 bus

PC MAR

Control
 unit

IR MBR

Memory

Figure: Data flow, fetch cycle.

The program counter contains the address of next instruction to
be fetched. This address is moved to the MAR and placed on the
address bus. The control unit request the memory read and the
result is placed on the data bus and copied into the MBR and
then move to the IR. Mean while the PC is incremented by 1.
 Once the fetched cycle is over. The control unit examine the
contains of IR to determine if it contains operand specifier using
indirect addressing. If so indirect cycle is performed.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /34

Address
 bus

 Data
 bus

 Control
 bus

Control
 unit

Memory

MBR

MAR

Fig: Data flow, Indirect cycle

The right most N bits of MBR which contains the address
reference are transfer to the MAR then the control unit request
the memory read to get the desire address of operand into the
MBR.
 The fetch and indirect cycle are simple and predictable. The
execute cycle takes many forms, the forms depends on which of
the various machine instruction is in IR. This cycle may involve
transferring data among registers, read or write from memory or
i/o.
 Like fetch and indirect cycle, interrupt cycle is simple and
predictable.

Date:2066/1/9

Address
 bus

 Data
 bus

 Control
 bus

Memory

MBR

MAR

Control
 unit

PC

 Fig: Data flow interrupt cycle.

The current contents of PC must be set, so that the CPU can be
resume normal activity after the interrupt. Thus the content of PC
are transfer to the MBR to be written in the memory. The special
memory location reserve for this purpose is loaded into the MAR
from control unit. The PC is loaded with the address of interrupt
routine.

Instruction pipelining: As a simple approach, consider
subdividing instruction processing into two stages: fetch
instruction and execution instruction. There are times times
during the execution of instruction when main memory not being
access this time could be use to fetch next instruction in parallel
with the execution of current one. Fig explain this approach.

Fetch Execute
InstructionInstruction

Result

Fig: Two stage Instruction pipelining.

Downloaded from www.jayaram.com.np /35

The pipe line has two independent stages. The first stage fetches
an instruction and buffers it when the second stage is free the
first stage passes it the buffer instruction. While the second stage
is executing the instruction the first stage takes advantage of any
unused memory cycles to fetch and buffer the next instruction.
This is called instruction prefetch or fetch overlape. This process
will speed up instruction execution.
 To gain further speed the pipe line must have more stages. Let
us consider the following decomposition of instruction
processing:

- Fetch instruction (FI)
- Decode instruction (DI): Determine the upcode and

operand specifies.
- Calculate operand(CO): calculate the effective address of

each source operand.
- Fetch operand (FO): Fetch is operand from memory.
- Execute instruction(EI): Perform the indicated operation.
- Write operand(WO): Store the result in memory.

With this decomposition the various stages will be of more
nearly equal duration for the sake of illustration let us assume
equal duration. Using this assumption figure shows that six stage
pipe line can be reduced the execution time for five instruction
from 30 time units to 10 time units.

1 2 3 4 5 6 7 8 9 10

Instruction 1

Instruction 2

Instruction 3

Instruction 4
Instruction 5

FI DI CO FO EI WO
FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

Fig: Timing diagram for instruction pipelining operation.

Several comments are in order:
 Diagram assumes that each instruction goes through all six
stages of pipeline. This will not always be the case. For example,
load instruction doesn’t need WO stage however to simplify the
pipeline hardware, the timing is set up assuming that each
instruction requires all six stages. Also the diagram assumes that
all of the stages can be performed in parallel. In particular it is
assume that there is no memory conflict. For example, FI, FO
and WO stages involve memory access. The diagram implies
that all these access can occur simultaneously. Most memory
system will not permit that. How ever the desired value may in
cache or FO or WO stage may be null. Thus much of the time
memory conflict will not slow down the pipeline.
 Several other factor serve to limit the performance
enhancement. If the six stages are not of equal duration there will
be some waiting involve at various pipeline stages. Other
difficulties, the condition branch instruction can invalidate

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /36

several instruction fetches. A similar unpredictable event is
interrupt.
 Assume that instruction 3 is the conditional branch to
instruction 15. Until the instruction is executed there is no way
of knowing which instruction will come next. The pipe line in
this example simply load the next instruction in sequence
(instruction 4)and proceeds.

Date: 2066/1/10

1 2 3 4 5 6 7 8 9 10 11 12 13 14
FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO

FI DI

FI

FI DI CO FO EI WO

FI DI CO FO EI

CO

DI

FI

WO

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 15

Instruction 16

 Fig: Effect of conditional branch on instruction pipeline
instruction.

In the figure the branch is taken. This is not determine until the
end of time unit 7. At this point the pipe line must be cleared of
instruction that are not useful. During item unit 8 the instruction
15 enters the pipeline. No instruction complete during the time

units 9-12. This is the performance penalty incurred because we
couldn’t anticipate the branch.
 Figure indicates the logic needed for pipelining to accounts for
branches and interrupts.

FI

DI

CO

Conditional
branch ?

FO

EI

WO

Branch or
interrupt ?

Yes

Yes No

Update PC

Empty pipe

Fig: six stage CPU instruction pipeline.

Downloaded from www.jayaram.com.np /37

The Pentium Processor:

Register organization:
The register organization include the following type of register:
General: There are eight 32 bit register. This may be used for all
type of Pentium instruction. They can also hold operand for
address calculation.
Segment: There are six 16 bit segment register. The code
segment register references the segment containing the
instruction being executed. The stack segment register references
the segment containing the user visible stack.
Flags: It includes six condition codes (carry, parity, auxiliary,
zero, sign, overflow). Which report the results of integer
operation. In addition there are bits in the register that may be
referred to as control bits. Interrupt enable flags when set the
processor will recognize external interrupt.
Instruction Pointer: It contains the address of instruction.
Control register: The Pentium employs four 32 bit control
registers. Control various aspect of processor operation.
 There are also register specifically devoted to the floating point
unit:
 Numeric: Each registers holds extended precision 80 bit floating
point number.

Control: 16 bit control register contains bits that control the
operation of floating point unit.

Status: 16 bit status register contains the bits that reflect the
current state of floating point unit.

Tag word: 16 bit register contains 2 bit tag for each floating
point numeric register, Which indicates the nature of contents of
corresponding register. The four possible values are valid, zero,
special (infinity) and empty.

The power PC organization:
 Register organization: The fixed point unit includes
General: There are 32 sixty four bit general purpose registers.
These may be used to load, store and manipulate data operands
and may also used for register indirect addressing.
Accept ional register: Includes 3 bit that repot exceptions in
integer arithmetic operations.
The floating point unit includes addition user visible register
General: There are 32 sixty four bit general purpose register used
for all floating point operation.
Floating pint status and control register: This 32 bit register
contains bits that control the operation of floating point unit and
bits that record status resulting form floating point operation.
 The branch processing unit contains user visible registers.
Condition register: Consists of 8 four bit condition code.
Link register: This register is used for call/return instructions . If
the LK bit in condition branch instruction is set then the address
following the branch instruction is fetched in the link register
and it can be used for later return.
Count: The count register can be used to control the iteration
loop. The count register is decremented each time, it is tested in
conditional branch instruction.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /38

Chapter: 6

Instruction execution characteristics: One of the most visible
form of evaluation associated with a computer is that of
programming languages. The response from researches and
industry has been to develop ever more powerful and complex
high level programming languages. These high level languages
allow the programmer to express algorithm more concisely take
care of much of the detail and often support naturally the use of
structure programming or object oriented design.
 This solution give rise to another program known as
symmetric gap, difference between the operation provided in
HLL and those provided in computer architecture. Symptom of
these gap are execution inefficiency excessive machine program
size and compiler complexicity. Designers responded with
architectures intended to close this gap. Key feature includes
large instruction sets dozens of addressing modes and various
HLL statements implemented in hardware. Such complex
instruction set are intended to:

- Ease the task of complier writer.
- Improve Execution efficiency.
- Provides support for even more complex and suffocated

HLL.
- Mean while and number of studies have been done over

the years to determine the characteristics and patterns of
execution of machine instruction generated from HLL
program. The results of these studies inspire some
researchers to look for a different approach namely to
make the architecture that support the HLL simpler rather
than more complex.

Use of large register file:
The result summarize in instruction execution characteristics
point out the desirability of quick access to operand. We have
seen that there is large proportion of assignment statement in
HLL program and many of this are simple form A←B also there
is significant no of operand access per HLL statement. If we
coupled these result with the fact that most accesses are to local
scalarors. Heavy reliance or register storage is suggested.
 The reason that the register storage is indicated is that it
is the faster available storage device faster than both main
memory and cache. The register file is physically small on the
same chip as ALU and control unit. Thus the strategy is needed
that will allow most frequently access operand to be keep in
register and minimize register memory operation.
 Two basic approach are possible, one based on hardware
and other on software.
 The software approach is to reli complier to maximize register
usages. The complier is attempt to allocate register to those
variable that will be used to most in a given time period. The
hardware approaches is simple to used more register so that more
variable can be held in the register for longer period of time.

Register window:
 On the face of it, the use of large set of register should decrease
the need to access memory, because the most of operand
references are to local scalars the obvious approach is to store
these in the register with perhaps with few register reserved for
global variable. The problem is that the definiatatio of local
changes with each procedure call and return operation that occur
frequently . On every call local viable must be saved from the

Downloaded from www.jayaram.com.np /39

register input memory so that the register can be reused by call
programs. Further more the parameter must be passed on return
the variables of the parent program must be restore and results
passed back to the parent program.
 The window register is divided into fixed size areas,
parameter register hold the parameters passed down form the
procedure that called the current procedure and hold the results
to be passed back up. Local registers are used for local variables
as assigned by compiler, temporary registers are used to
exchange parameters and results with the next lower level.
(procedure called by current procedure).

parameter
register

Local
register

Temporary
register

parameter
register

Local
register

Temporary
register

Call/register

Level-I

Level-(I+1)

Fig: overlapping register.

Complier-Based register optimization:-
 The objective of complier is to keep the operands for as many
computation as possible in registers rather then main memory
and to minimize the load and store operations .
 Each program quantity that is a candidate for residing a
registers in assigned to a symbolic register or virtual registers.
The complier then maps the unlimited no of symbolic into a
fixed no of real registers. Symbolic registers whose uses doesn’t
overlap can share the same real registers. If in a particular
portion of a program there are more quantities to deal with than
real registers then reuse of the quantities are assigned to memory

locations. Load and store register are used to position quantities
in registers temporarily for computational operations.
 The essence of the optimization task is to decide which
quantities are to be assigned to registers at any given point in th
program. The technique must commonly used is known as graph
coloring.
 Given a graph consisting of nodes and edges assign color to
node such that adjacent modes have different colors and do this
in such a way as to minimize the no of different color. First the
program is analyzed to build a register interference graph the
nodes of the graph are symbolic registers if two symbolic
registers are live during the same program framgment then they
are joined by edge to depict the interference. An attempt is then
made to color the graph with n colors where ‘n’ is the no of
registers nodes that share the same color can be assigned to same
registers if this process doesn’t fully succeed than those nodes
that can’t be colored must be placed in memory. Assume a
program with six symbolic registers to be complied into three
actual registers.

C

A

B

D E F

Fig: Register interface graph.

A B C D E F

Fig: timing sequence of active
 use of register.

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /40

Reduced instruction set computer (RISC) characteristics:
In the early 1980’s a number of computer designers
recommended that computer use fewer instructions with a
simple construct so they can be executed much faster within the
CPU without having to use memory as often. This type of
computer is classified as RISC. The concept of RISC
architecture involves attempt to reduce execution time by
simplifying the instruction set of the computer. The major
characteristics of RISC processor are:

1. Relatively few instruction.
2. Relatively few addressing mode.
3. Memory access limited to load and store instruction.
4. All operations done within the register of CPU.
5. Fixed length, easily decoded instruction format.
6. Single cycle instruction execution.
7. Hard-wired rather than micro program control

Complex Instruction set computer (CISC) characteristics:-
 A computer with large no of instruction is classified as complex
instruction set computer (CISC). The major characteristics of
CISC architecture are :

1. Large no of instructions typically form hundred to 250
instructions.

2. Same instructions that perform specialized task and are
used in frequency.

3. A large variety of addressing modes typically form 2-50
different modes.

4. Variable length instruction format.
5. Instruction that manipulate operands in main memory.

RISC Pipelining:

The simplicity of the instruction set can be utilized to implement
the instruction pipeline using a small no of sub-operations with
each being executed in one clock cycle. All data manipulation
instructions have register to register operations. Since all
operands are in register there is no need of calculating the
effective address or fetching of operand from memory. The
instruction cycle can be divided into 3 sub-operations and
implemented in 3 segments:
1. I - Instruction fetch.
2. A – ALU operation.
3. E - Execute instruction.
Consider now the operation of following four instruction: -
1. Load R1 ← M [address 1]
2. LOSD:R2 ← M [address 2]
3. ADD:R3← R1+R2
4. STORE:M[address] ← R3

 If 3 segment pipeline proceeds without interrupt ther willl be
data conflict in instruction three because the operand in R2 is
not yet available in A segment. This can be seen from the timing
of pipeline shown in fig.

Clock cycles 1 2 3 4 5 6
1. Load R1 I A E
2. Load R2 I A E
3. Load R1+R2 I A E
4. Load R3 I A E

a) Pipeline with data conflict.

The E segment in clock cycle ‘4’ is in the process of placing the
memory data into R2. The A segment in clock cycle 4 is using
the data from R2 but the value in R2 will not be the correct value

Downloaded from www.jayaram.com.np /41

since it has not yet been transferred from memory. If compiler
can not find a useful instruction to put after the load it inserts no
operation instruction thus wasting a clock cycle. This concept of
delaying the use of data loaded form memory is referred to as
delayed load.

Clock cycles 1 2 3 4 5 6 7
1. Load R1 I A E
2. Load R2 I A E
3. No operation I A E
4. Add R1 +R2 I A E
5. Store R3 I A E

Date: 2066/1/22
Chapter:7
Control unit and micorprogrammed control

Micro-operation.
 The operation of computer is executing a program consists of
sequence of instruction cycle. Each instruction cycle is made up
off no of smaller units, one subdivision that we found convienent
is fetch, indirect execute and interrupt with only fetch and
execute cycle always occurring. Each of the smaller cycle
involve series of steps, each of which involve processor register.
We will refer to these steps as micro operations. Fig depict the
relationship among the various concepts we have been
discussing.

Program Execution

Instruction
cycle

Instruction
cycle

Instruction
cycle.

IndirectFetch Execute Interrupt

uop uop uop

 Fig: constituent element of program execution.

Fetch cycle: It causes an instruction to be fetched form memory.
Fetch cycle actually consist of three steps and four micro
operations.
 t1: MAR ← (PC)
 t2: MBR ←Memory
 PC ←PC+1
 t3: IR ←(MBR)
The notion (t1,t2,t3) represent successive time units.

Indirect cycle: once an instruction is fetch , the next step is to
fetch source operand.
 t1: MAR ← (IR (address))
 t2: MBR ←Memory
 t3: IR(address) ←(MBR(address))

Interrupt cycle: At the completion of execution cycle a test is
made to determine weather any enabled interrupts have occur if
so the interrupt cycle occurs.
 t1: MBR ← (PC)

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /42

 t2: MAR ←save address
 PC ←Routine address
 t3: Memory ←(MBR)

Execute cycle: The fetch indirect and interrupt cycle are simple
and predictable. Each involve fix sequence of micro operation.
This is not true of the execute cycle for a machine with N
different upcodes, there are N different sequence of micro
operation that can occur. Consider ADD instruction.
 ADD R1,X
Which adds the content of location X to register R1.
 t1: MAR ← (IR address)
 t2: MBR ←Memory
 t3: R1 ←(R1)+(MBR)

Date: 2066/1/24

Control of processor:
We can define the functional requirements for the control unit. A
definition of these functional requirement is the basis for design
and implementation of the control unit. The following three steps
process lead to characterization of control unit.

1. Define the basic elements of the processor
2. Describe the micro operation that the processor performs.
3. Determine the functions that the control unit must perform

to cause the micro operations to be performed.
The basic functional elements of processor are:

- ALU
- Register.
- Internal data path.

- External data path.
- Control unit
-

All micro operation fall into of the following category.
- Transfer data from one register to another.
- Transfer data from one register to external interface.
- Transfer data from external interface to register.
- Perform the arithmetic or logic operation using register for

input and output.

Flags

Clock

Control
unit

Control signal
within CPU

Control signal from CPU bus

Control signal to system bus

Cntrol bus

Instruction register

Fig: model of control unit.

Hardwire implementation: In hardwire implementation the
control unit is essentially a combinatorial circuit. Its input logic
signal are transform into set of output logic signal which are the
control signal.
 The key inputs are instruction register, clock , flag and
control bus signal. The control unit makes the use of op-code and
will perform the different actions for different instructions. To
simplify the control unit logic, there should be unique logic input
for each op-code. This function can be performed by decoder
which takes encoded input and produces and single output.

Downloaded from www.jayaram.com.np /43

IR

Decoder

.

Control unitTiming
diagram

Flags
Clock

Tn

T1
T2

I1I0 I2 Ik

.
C0 C1 C2 Cn

Fig: Control unit with decoded input.

Let us consider a single control signal c5. This signal causes data
to be read from external data bus into MBR. Let us define two
new control signal P and Q that have following interpretation.
PQ = 00 Fetch cycle.
PQ = 01 Indirect cycle .
PQ = 10 Execute cycle .
PQ = 11 Interrupt cycle.

 Then the following Boolean expression define c5.
 C5 = P’Q’T2 +p’.Q.T2
i.e the control signal c5 will be asserted during the 2nd time unit
of both fetch and indirect cycle.

Microinstruction sequencing: The two basic task performed
by micro programmed control unit are as follows:

- Micro instruction sequencing:- Get then next micro
instruction from the control memory.

- Micro instruction execution:- Generates the control signals
needed to execute the micro instruction.

 Based on the current micro operation , condition flags and
content of instruction register, control memory address must be
generated for next micro instruction. A wide variety of
techniques have been used. We can group them into three
general categories based on the format of address information in
the micro instruction:

- Two address field.
- Single address field.
- Variable format.

CAR

Address decoder

contorl memory

contorl address
 2

address
 3

IR

MUXBranch
logic

CBR

address
 selection

flags

Fig: branch control logic, two address fields.

A multiplexer is provided that serves as destination for both
address field plus instruction register based on the address

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /44

selection input the multiplexer transmits the op-code or one of
the two address to the control address register (CAR). CAR is
subsequently decoded to produce the next micro instruction
address.

IR

MUXBranch
logic

flags

Address decoding

contorl memory

contorl address
CAR+1

Fig: Branch control logic single address field.

Micro instruction execution:
The effect of execution of micro instruction is to generate control
signal. Some of these signals control points internal to the
processor. The remaining signal go to the external control bus.

sequencing
logic CAR

contorl
 memory

CBR

Control logic

flag

clock

Internal control
signal

External control
signal

IR

Fig: control unit organization.

The sequencing logic module generates a address of next micro
instruction using as inputs instruction register flags, CAR(for
implementing), control buffer register. The module is driven by
clock that determine the timing of micro instruction cycle. The
control logic module generate the control signal as a function of
some of the bits in micro instruction.

Application of microprogramming:
The set of current application for micro programming include:

- Realization of computer.
- Micro program approach offer a systematic technique for

control unit implementation. A relative technique is
emulation. Emulation refer to used of microprogramming
on one machine to execute program original written for
another.

Downloaded from www.jayaram.com.np /45

- Another used of microprogram is in the area of operating
system supports.

- Realization of special purpose device a good example of
this is data communication bore

- High level language support microprogramming can be
used to support monitoring detection, isolation and repair
of system error. These feature are known as micro
diagnostics and significantly enhance the system
maintenance facility.

- User tailoring, a no of machine produced writable control
store that is control memory implemented in RAM rather
than ROM and allows the user to write micro programs.
These allows the user to tailor the machine to the desire
application.

Date:2066/1/29
 Chapter:- 8

Parallel organization:-
Parallel processor system:-

The most common way of categorizing computer system are:

1. Single instruction single data stream(SISD): A single
processor executes a single instruction stream to operate
on data stored in single memory.

2. Single instruction multiple data (SIMD) stream:- A single
machine instruction controls the simultaneous execution
of no of processing elements. Each processing element
elements has associated data memory so that each

instruction is executed on different set of data by different
processes.

3. Multiple instruction single data(MISD)stream:- A
sequence of data is transmitted to a set of processor. Each
of which executes different instruction sequence. This
structure is not commercially implemented.

4. Multiple instruction multiple data(MIMD) stream:- A set
processor simultaneously execute different instruction
sequence on different data set.

MUPUCU

DSIS

a) SISD

CU

DS

DS

DS

LM1

LM2

LMn

PU1

PU2

PUn
b) SIMD(with distributed memory)

PU1

PU2

PUn

CU1

CU2

CUn

 Shared
 Memory

c) MIMD (with shared memory)

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /46

DS

DS

DS

LM1

LM2

LMn

PU1

PU2

PUn

CU1

CU2

CUn

Interconnection
Network

d) MIMD(with distributed memory)

Fig: Alternative computer organization.
 CU = control unit.
 PU= processing unit.
 IS = Instruction stream.
 DS= Data stream.
 MU= Memory unit.
 LM= Loosely packed memory (distributed memory)
 TM= trgutly packed memory.

 With SISD there is some sort of control unit (shared memory)
that provide instruction string to processing unit. The processing
unit operate on single data stream from memory unit. With
SIMD there is single control unit, now feding single instruction
unit to multiple processing unit. Each PU may have its own
dedicated memory or there may be a shred memory. Finally with
MIMD there are multiple control units each feeding a separate
instruction stream to its own PU. The MIMD may be sheared

memory multiple processor or distributed memory
multiprocessor.

Multiprocessing: A multiprocessor system is interconnection
system of two more CPU with memory and I/O equipment.
Multiprocessor are classified as multiple instruction multiple
data string (MIMS). Multiprocessing improves the reliability of
the system so that filer or error in one part has limited effect on
rest of the system. If a fault causes one processor to fail, second
processor can be assign to perform the disabled processor.
 The benefit derived from multiprocessor
organization is include system performance. The system derives
its high performance from the fact that computation can proceed
in parallel in one of the two ways.

1. Multiple independent jobs can be made to operate in
parallel.

2. A single job can partition in to multiple parallel task.
 The interconnection between the components of multiprocessor
can have different physical configuration depending on the
number of transfer path that are available between the processor
and memory. Some of them are:

1. Time shared common bus.
2. Multi port memory.
3. Crossbar switch.

Time shared common bus:

Downloaded from www.jayaram.com.np /47

CPU1 CPU2 CPU3 CPU4 CPU5

Memory
unit

Fig: Time shared common bus organization.

 A common bus multiprocessor system consist of number of
processor connected through common path to a memory unit. A
time shear common bus for 5 five processor is shown in fig .
Only one processor can communicate with memory or another
processor at a given time.

Multiport memory:

MM1 MM2 MM3 MM4

CPU1

CPU2

CPU3

CPU4
Fig: multiport memory organization.

A multiple memory system employs separate buses between
each memory module and each CPU. This is shown in figure for
four CPU and four memory module. Each processor bus is
connected to each memory module. The memory module is said
to have four ports and each ports accommodates one of the
buses. The module must have internal control logic to determine
which port will have to access to memory at any given time.
Memory access conflict results are reserve by assigning fixed
priority to each memory ports. Thus CPU1 will have priority
over CPU2, CPU2 will have priority over CPU3, and CPU4 will
have lowest priority.

Crossbar switch:-

CPU1

CPU2

CPU3

CPU4

MM1 MM1 MM1 MM1

Fig: crossbar switch

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /48

The crossbar switch organization consists of no of cross points
that are placed at the interconnection between the processor bus
and memory module both. Fig shown crossbar interconnection
between four CPU and four memory modules.
 The small square in each cross point is a switch that determine
the path form processor to memory modules. Each switch point
has control logic to set up the transfer path between the processor
and memory. It examine the address that is placed in the bus to
determine. Whether its particular modules is being address. Its
also restore multiple request for access to the same memory
modules on predetermine priority basic. A crossbar switch
organization support simultaneous transfer form all memory
modules because there is a separated path associated with each
module.

Cache coherence and MESI protocol:

CPU CPU M

a) Bus based multiprocessors without cache.

CPU CPU
M

Cache

 b) Busbased multiprocessor with cache.

The simplest multiprocessor based on single bus to or more CPU
and one or more memory modules all used the same bus for

communication. When a CPU want to read a memory wrod , it
first checked to see if the bus is busy, if the bus is ideal the CPU
put the address of the word it wants on the bus asserts a few
control signal and waits until the memory puts a desire words on
the bus.
 If the bus is busy when the CPU wants to read/write memory,
the CPU just wait until the bus becomes ideal with 2 or 3 CPU
contention for bus will be manageable with 32 or 64 bit will be
unbearable. Most of the CPU will be ideal most of this time.
 The solution to these problem is to add a cache to each CPU
since many reads can now satisfy out of local cache. There will
be much less bus traffic and system can support more CPU.
 When a processor find the word in cache during read
operation the main memory is not involves in the transfer. If the
operation is to write there are two commonly used procedure to
update memory in write through method. Both cache and main
memory are updated with every write operation.
 In the write policy only the cache is updated and location is
marked so that it can be copied latter into the main memory.
 To ensure the ability of the system to executed the memory
operation correctly multiple copies must be identical. These
requirement cache coherence problem read only data can safely
be replicated without cache coherence to illustrated the problem
consider three processor configuration with private cache shown
in fig.

Downloaded from www.jayaram.com.np /49

X=52

X=52 X=52 X=52

P1 P2 P3

Caches

Main memroy.

Fig: cache configuration after load on x.

X=120

X=52 X=52 X=52

P1 P2 P3

Caches

Main memroy.

Processors

a) with write through cache policy.

X=52

X=120 X=52 X=52

P1 P2 P3

Caches

Main memroy.

Processors

b) with write back cache policy.

MESI cache coherence protocol:

CPU1 CPU2 CPU3 memory

Bus

A

Exclusive CPU1 reads block A

Shared Shared

CPU1 CPU2 CPU3 memory

Bus

A

CPU2 reads block A

A

CPU1 CPU2 CPU3 memory

Bus
CPU2 reads block A

A

- By Er. Manoj Basnet (Teaching Assistant), PU school of Engineering and Technology ,Biratnagar. /50

CPU1 CPU2 CPU3 memory

Bus
CPU3 reads block A

A A

To provide cache consistency, cache after supports a protocol
known as MESI(Modified Exclusive shared invalid) each cache
entry can be is one of the following four steps.

1. Invalid: The cache entry doesn’t contain valid data.
2. Shared: Multiple Caches may hold the line.
3. Exclusive: No other cache hold the line.
4. Modified: The entry is valid. Memory is invalid.

 The first time the memory is read, the line referenced is
fetched into the cache of CPU reading memory and marked as
being in ‘E’ state. Since it is the only copy in a cache as shown
in fig ‘a’. Another CPU may also fetch the same line and cache it
both copies are marked as being in ‘s’ state as shown in fig b. If
CPU two writes to the cache line it is holding in ‘s’ state it puts
out invalidate signal on the bus telling all other CPUs to discard
their copies. The copy catch now goes to M state as shown in fig
‘c’. If CPUs reads the line, cpu2 which now owns the line knows
that copy in memory is not valid so it asserts the signal on the
bus telling CPUs to please wait which it writes its line back to
the memory when it is finished. CPUs fetches a copy and the
line is marked as shared in both cases as shown in fig ‘d’.

Vector Computer:-
 Consider two vectors (one dimensional array) of numbers A
and B. We would like to add there and place the result in c. In
the example.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4.79
1.21
5.111
903.1006

8.46
5.3

7.19
1.21

11
003.1000

7.39
0.2

7.59
0

5.100
9.6
1.7
5.1

A + B = C

This requires six separate addition. We can seed up this by
introducing some form of parallelism.

Input register

memory
output register

Pipelined ALU

b) Pipelined ALU

memory output register

ALU

ALU

ALU

c) Parallel ALU

Floating point operations are complex. There is opportunity for
decomposing floating point operation into stages so that different

Downloaded from www.jayaram.com.np /51

stages can operate on different sets of data concurrently. Floating
point addition is broken up into four stages: Compare, shift, Add
and Normalize. A vector of numbers is presented sequentially to
the first stage as the processing proceeds four different stets of
numbers will be operated on concurrently in the pipeline.

compare
exponent

Shift
Significant

Add
Significant Normalize

xi

yi

C S A N

C S A N

C S A N

C S A N

C S A N

Z1

Z2

Z3

Z4

x1 y1

x2 y2

x3 y3

x4 y4
 Fig: pipelined ALU

